Solvent and temperature effects on the deactivation pathways of excited ion pairs produced via photoinduced proton transfer.

نویسندگان

  • László Biczók
  • Pierre Valat
  • Véronique Wintgens
چکیده

The kinetics of the energy dissipation pathways of the excited ion pairs formed upon light absorption of the hydrogen bonded complex between N-methyl-3-hydroxynaphthalimide (3HONI) and 1-methyl-imidazole (MIm) has been studied in a wide temperature range in solvents of various polarities. In polar media such as butyronitrile, three emitting species are found which are assigned as hydrogen bonded, solvent separated and free ion pairs. In contrast, less polar solvents do not favour free ion pair formation, and reversible transition occurs between the excited hydrogen bonded (HBIP) and solvent separated (SSIP) ion pairs around room temperature. Systematic steady-state and time-resolved fluorescence measurements combined with computer modelling enabled the deduction of the kinetic parameters for all excited state deactivation processes in solvents of moderate polarity. The Arrhenius parameters of the interconversion between the ion pairs, the A-factor for the radiationless deactivation of SSIP and the radiative rate constant of HBIP diminish with the increasing dielectric constant of the media. The enthalpy and the entropy change in the SSIP formation from HBIP become less negative in more polar solvents. Going from ethyl acetate to CH2Cl2 the most profound decrease (more than three orders of magnitude) is observed for the A-factor of SSIP --> HBIP reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved studies of photoinduced processes in room temperature ionic liquids

This review summarizes the photophysical studies carried out in room temperature ionic liquids with explicit focus on those involving time-resolved measurements. Different types of photoinduced processes studied in ionic liquids are discussed with a view to understand the influence of ionic liquids in guiding the course of individual photo-reaction/process and to elucidate the difference betwee...

متن کامل

Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product

We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossi...

متن کامل

Photochemistry between a ruthenium(II) pyridylimidazole complex and benzoquinone: simple electron transfer versus proton-coupled electron transfer.

A ruthenium(II) complex with two 4,4'-bis(trifluoromethyl)-2,2'-bipyridine chelates and a 2-(2'-pyridyl)imidazole ligand was synthesized and characterized by electrochemical and optical spectroscopic means. The respective complex has the potential to act as a combined electron-proton donor when promoted to its long-lived (3)MLCT excited state with visible light. The possibility of proton-couple...

متن کامل

Role of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent.

Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-n...

متن کامل

Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

Many donor-acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2003